Energy release and conversion by reconnection in the magnetotail
نویسنده
چکیده
Magnetic reconnection is the crucial process in the release of magnetic energy previously stored in the magnetotail in association with substorms. However, energy transfer and dissipation in the vicinity of the reconnection site is only a minor part of the energy conversion. We discuss the energy release, transport, and conversion based on largescale resistive MHD simulations of magnetotail dynamics and more localized full particle simulations of reconnection. We address in particular, where the energy is released, how it propagates and where and how it is converted from one form into another. We find that Joule (or ohmic) dissipation plays only a minor role in the overall energy transfer. Bulk kinetic energy, although locally significant in the outflow from the reconnection site, plays a more important role as mediator or catalyst in the transfer between magnetic and thermal energy. Generator regions with potential auroral consequences are located primarily off the equatorial plane in the boundary regions of the plasma sheet.
منابع مشابه
The magnetotail reconnection region in a global MHD simulation
This work investigates the nature and the role of magnetic reconnection in a global magnetohydrodynamic simulation of the magnetosphere. We use the Gumics-4 simulation to study reconnection that occurs in the near-Earth region of the current sheet in the magnetotail. We locate the current sheet surface and the magnetic x-line that appears when reconnection starts. We illustrate the difference b...
متن کاملTail reconnection triggering substorm onset.
Magnetospheric substorms explosively release solar wind energy previously stored in Earth's magnetotail, encompassing the entire magnetosphere and producing spectacular auroral displays. It has been unclear whether a substorm is triggered by a disruption of the electrical current flowing across the near-Earth magnetotail, at approximately 10 R(E) (R(E): Earth radius, or 6374 kilometers), or by ...
متن کاملEstimates of magnetotail reconnection rate based on IMAGE FUV and EISCAT measurements
Dayside merging between the interplanetary and terrestrial magnetic fields couples the solar wind electric field to the Earth’s magnetosphere, increases the magnetospheric convection and results in efficient transport of solar wind energy into the magnetosphere. Subsequent reconnection of the lobe magnetic field in the magnetotail transports energy into the closed magnetic field region. Combini...
متن کاملStrong rapid dipolarizations in Saturn’s magnetotail: In situ evidence of reconnection
[1] The oppositely directed magnetic field in the kronian magnetic tail is expected eventually to reconnect across the current sheet, allowing plasma to escape in an anti-solar direction down the tail. This reconnection process accelerates ions and electrons both toward and away from the planet, allowing the magnetotail to relax to a more dipolar configuration. Previous missions to Saturn shed ...
متن کاملEnergy partition in magnetic reconnection in Earth's magnetotail.
The partition of energy flux in magnetic reconnection is examined experimentally using Cluster satellite observations of collisionless reconnection in Earth's magnetotail. In this plasma regime, the dominant component of the energy flux is ion enthalpy flux, with smaller contributions from the electron enthalpy and heat flux and the ion kinetic energy flux. However, the Poynting flux is not neg...
متن کامل